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Tensile properties and inhomogeneous 
deformation of ferrite-martensite dual-phase 
steels 
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The tensile properties and inhomogeneous deformation of coarse ferrite-martensite dual-phase 
steels containing 17-50% martensite were analysed. The stress of dual-phase steels at equal strain 
increased with increasing volume fraction of martensite, f, but the rate of increase was reduced 
after f =0.3. The strain hardening rate was dependent on f at small strains (s ~< 0.03), however, it 
became independent of f at larger strains. It was found that the deformation of the dual-phase 
steels divided into three different stages when f was less than about 0.3. The concurrent in situ 
stress-strain states of ferrite, martensite and their composite, and the stress ratios and strain ratios 
between ferrite and martensite were evaluated by means of a new stress and strain partition 
theory. The martensite phase deformed plastically after the uniform strain for f <0.25, while it was 
plastic before the uniform strain for f >0.25. The theoretical analyses for inhomogeneous 
deformation implied that the volume-fraction dependence of the stress and the characteristics of 
the strain-hardening rate were influenced by the plastic deformation of martensite. Further, the in 
situ stress-strain curves of ferrite and martensite and the internal stresses at respective phases 
were calculated from the partitioned stresses and strains. 

1. Introduction 
Dual-phase steels are composite materials consisting 
of a soft ferrite matrix and hard martensite particles, 
which are produced by intercritical annealing fol- 
lowed by accelerated cooling [1-3]. If an external 
force is applied to the ferrite-martensite composite, 
the mechanical interactions arising from the con- 
straints between the two different phases bring about 
inhomogeneous distributions of stress and strain 
[4-8]. The mechanical behaviours of dual-phase steels 
arise from the processes of stress and strain partition 
between constituent phases. Yet, there are few system- 
atic descriptions of the inhomogeneous deformation 
and the relationships between the macroscopic mech- 
anical properties and the inhomogeneous deforma- 
tion. The objectives of the present study are to analyse 
the inhomogeneous deformation of dual-phase steels 
systematically, and to find relationships between ten- 
sile properties and the stress and strain partition. 

Various types of inhomogeneous deformation were 
observed in dual-phase steels [6-7]. If a dual-phase 
steel contained a small amount of high-carbon mar- 
tensite, only the ferrite phase deformed plastically, so 
the stress and strain partition was similar to that of 
particle-hardened alloys [9-13]; however, if the steel 
included a large amount of ductile martensite, the 
stress and strain partition was similar to that of duplex 
alloys containing two plastically deformable phases 
[13 14]. Further, the inhomogeneous deformation of 
ferrite-martensite dual-phase steels may include vari- 

ous phenomena such as plastic deformation of ferrite, 
accumulation of unrelaxed plastic incompatibility 
[15-21], plastic relaxation [22-26] and yielding of 
martensite [7, 14]. 

The authors [13] have developed a s t ress-and 
strain-partition theory using the Lagrangian-multi- 
plier method, by which the elastic and plastic deforma- 
tions in alloys such as WC-Co,  spheroidized car- 
bon steel, and duplex stainless steel were successfully 
analysed. In this work the theory is modified, as de- 
tailed in the Appendix, and the modified theory is used 
to calculate the stress and strain partition in dual- 
phase steels containing various volume fractions of 
martensite. Also, the tensile-deformation properties of 
the ferrite martensite composites are analysed in 
terms of the volume-fraction dependence of stress and 
the variation of the strain-hardening rate. Then an 
explanation is given for the macroscopic mechanical 
behaviour by means of the theoretically calculated 
results for stress and strain inhomogeneity. 

2. Material and exper imenta l  
procedures  

The material for this investigation was manufactured 
as billet, and the chemical composition of the material 
was Fe-0.11wt % C 1.64wt % Mn-0.78wt % Si. The 
billet was hot extruded forming rods of 20 mm dia- 
meter, and then the rods were machined to round 
tensile specimens of 8 mm diameter and 45 mm gauge 
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length. The tensile specimens, having various volume- 
fractions of ferrite and martensite, were prepared by 
the heat-treatment schedules shown in Fig. 1. Each 
heat-treatment schedule consisted of austenitization 
at 930 ~ for 30 min and water quenching at various 
intercritical temperatures between 660 ~ and 930 ~ 
during cooling at a rate of 100 ~ h 1 

Metallographic specimens were etched in a meta- 
bisulphite solution, which revealed microstructures of 
white-ferrite-dark-martensite. The volume fractions 
of constituent phases were determined by a point- 
counting method on micrographs (Fig. 2). Further, 
mean intercept lengths of the ferrite and martensite 
were measured on the micrographs. 

Tensile tests were performed at room temperature 
in a universal testing machine with a strain rate of 
1.67 x 10-4s -1. The true-stress-true-strain curves 
were calculated from records of load and displace- 
ment: Vickers microhardness numbers, Hv,  of ferrite 
and martensite were measured on the etched surfaces 
of the round tensile specimens which were deformed 
by the uniform strain. 
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Figure 1 Heat-treatment schedules to produce various ferrite- mar- 
tensite dual-phase steels. The cooling rate is 100~ 1. 

3. Calculat ion method for the 
stress and strain part i t ion 
of dual-phase steels 

3.1 .  C a l c u l a t i o n  o f  s t ress  a n d  s t r a i n  

p a r t i t i o n  
The governing equations for the inhomogeneous de- 
formation of two-phase alloys have been derived by 
the authors [13] using a Lagrangian-multiplier 
method. In the present work the authors'  theory [13] 
is modified in the Appendix, and the modified theory 
is applied to inhomogeneous deformation of dual- 
phase steels. 

Tomota  et al. [14] classified the inhomogeneous 
deformation of two-phase alloys into three stages. In 
stage A both phases deform elastically. In stage B the 
soft phase deforms plastically while the hard phase 
remains in the elastic state. Finally, in stage C both 
phases deform plastically. The calculation procedures 
for these three stages were designed as follows. 

In stage A, since both ferrite and martensite in 
dual-phase steels have the same elastic constants, the 
deformation was assumed to be homogeneous. The 
elastic modulus of the ferrite and martensite, E, was 
assumed to be 207 GPa. 

In stage B, the martensite phase deforms elastically. 
The constitutive equation for the elastic martensite 
can be given by 

~2 = E~2 = 207~;2 (GPa) (1) 

Note that the subscripts 1 and 2 to stress, cy, and 
strain, ~, denote ferrite and martensite, respectively. 
The Hollomon-type stress-strain curves [33] of the 
ferrite-martensite composites are of the form 
cy = K~",  where K is the strength coefficient and n the 
strain-hardening coefficient, and they can be given by 
the tensile experiments. As a result, two stress-strain 
relations are known for the martensite phase and for 
the composite. The governing equation for this stage is 
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Figure 2 Optical micrographs of coarse-grained ferrite-martensite 
dual-phase steels. The dark is martensite phase and the white is 
ferrite phase (etched in metabisulphite solution). Volume fractions 
of martensite: (a) 0.24, and (b) 0.5. 

obtainable from Equation A15 as 

(cy - rs2)e + r - a2) = 0 (2) 

Equations 1 and 2 give the in s i tu effective strain of 



martensite 
20-c 

82 - (3) 
E a + o  

Then the in situ effective stress of martensite is given 
by 

2E0-c 
0-2 = Ea2 - (4) 

E s + 0 "  

Using the modified rules of mixtures represented by 
Equations A4 and A5 and using Equations 3 and 4, 
the in situ effective stress and in situ effective strain of 
the ferrite phase are obtained as 

(Ec + 0- - 2fEe)o- 
0-1 = (5 )  

(1 - f ) ( E a  + 0") 

[E5 + (1 - 2 f ) o ] c  
51 = (6) 

(1 - f ) ( E c  + 0-) 

These two equations give the in situ stress-strain 
curves of ferrite in stage B. 

Finally, in stage C the martensite as well as the 
ferrite deforms plastically. According to the calculated 
results for the deformation of stage B, the in situ plas- 
tic-flow curve of ferrite was insensitive to the volume 
fraction of martensite. Therefore, the ferrite-flow curve 
for f = 0.27, which was calculated by Equations 5 and 
6, was also used in all calculations for f >  0.27. The 
flow curve of the in situ ferrite phase is given by 

0-~ = 700~ ~ (MPa) (7) 

The governing equation at this stage is 

(O" - -  (5"1)5 ~- 0 - (5  - -  5 1 )  ---- 0 ( 8 )  

With two flow curves, 0" = Ka" for a ferrite-marten- 
site composite and 0-1 = K15] ' for ferrite, Equation 8 
was solved by a bisection iterating method. The par- 
titioned stresses and strains of the martensite phase 
were also calculated from the calculated stresses and 
strains of the composite and ferrite phase by means of 
the modified rules of mixtures (Equations A4 and A5). 

3.2 .  C a l c u l a t i o n  o f  i n t e r n a l  s t r e s s e s  a n d  
s t r ess  a n d  s t r a i n  c o m p o n e n t s  

In this paper the internal stress (long range) was de- 
fined by the stress difference between the average 
stress of a composite and the average stress of each 
phase. If it is assumed that martensite particles are 
randomly oriented in the ferrite matrix and that an 
external stress, o (=  0-11), is applied to a composite 
body in the uniaxial direction of 11, the relations 
between the internal-stress components of the tensile 
direction (11) and transverse directions (22 and 33) are 
given by [9, 14] 

11 11 1 --11 (9) 
0 - 2 2  = 0 - 3 3  -~ - -  2 0 1 1  

21 2I __ 1 __21 ( 1 0 )  
(3"22 ~ 0"33 ~ O l l  

where the superscripts lI and 2I denote the internal 
stresses at phase 1 and phase 2, respectively. Any shear 
component is zero. Then, the stress components for 
the 11, 22 and 33 directions at each phase become 

0-11 -- 0- + o I~  (11) 

1, (12) 0-21 = O" -~- ( J l l  

0-~2 0-L 1_1, (13) = = - -  ~O1.  1 

21 (14) 0-~1 = 0-L : - � 8 9  

Here the superscripts 1 and 2 indicate the ferrite and 
martensite phase, respectively. Using Equations 9-14 
and the definition of effective stress, the effective stres- 
ses at ferrite and martensite, 0-i and 0-2, are derived as 

1 
0-t = 21/2 [(0-~1 -- 0"212) 2 + (0"212 -- 0"13) 2 

-I- (0 -13  - -  0 - 1 1 ) 2 ]  1 /2  ( 1 5 )  

3 --11 
: 0- -I- 3 ( 5 1 1  

1 
0- 2 - -  2 1 / 2  E(0-121 - -  0 " 1 2 )  2 -1- ( 0 - 2 2  - -  0 2 3 )  2 

+ ( 0 - L  - o } i ) 2 ]  1/1 (16)  

3 _ 2 1  
= 0- --~ 5 O l l  

Therefore, the I1 components of internal stress at re- 
spective phases are given by 

ii = 2(0 -1  __ 0-) ( 1 7 )  0-11 

2, 3~ml - ~) (18) (5"11 : 

Additionally, it is assumed that the effective strains, ~1, c2 
and 5, and components of the total strains, elastic strains 
plus plastic strains, were interrelated by [13] 

8~2 = e~3 - 38111 1 _ �89 (19) 

512 = 523 - :5111 1 _ �89 (20) 

522  = E33 = - -  { E l l  - -  1 8  ( 2 1 )  

where the subscripts 11, 22 and 33 also denote the 
components of strain, and the superscripts 1 and 2 the 
respective phases. 

4. Results and discussion 
4,1.  M i c r o s t r u c t u r e  o f  f e r r i t e - m a r t e n s i t e  

d u a l - p h a s e  s tee ls  
Representative micrographs of coarse dual-phasesteels 
are illustrated in Fig. 2. In these microstructures marten- 
site islands (dark phase) of irregular shape are embedded 
in the continuous ferrite phase. Since the ferrite phase 
had primarily nucleated at the austenite grain bound- 
aries and grown into the interior of the austenite grain 
during cooling in the region of intercritical temperature 
[27], the ferrite phase became a continuous phase after 
water quenching, and so it is regarded as the matrix 
phase in ferrite-martensite composites. The contiguity of 
martensite, however, increases as its volume fraction 
increases [28]. 

The effect of the quenching temperature on the vol- 
ume fraction of martensite is presented in Table I. The 
ferrite phase was rarely transformed from the austenite 
phase until the temperature of the specimens reached 
about 800~ during cooling from austenitization at 
930 ~ (the martensite content of the specimen quenched 
from 800~ was about 95%). But the austenite phase 
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TABLE I Variation of martensite-volume fraction and summary 
of tensile test results: YS is the 0.2% offset yield stress, and UTS the 
ultimate tensile stress 

Quenching 
temperature 
T (~ f K (MPa) n YS (MPa) UTS (MPa) 

660 0.17 1296 0.245 312 767 
680 0.22 1245 0.220 331 797 
700 0.24 1246 0.199 387 802 
710 0.27 1254 0.183 395 839 
720 0.32 1305 0.185 393 865 
730 0.37 1288 0.162 395 904 
740 0.43 1298 0.157 482 919 
750 0.50 1311 0.150 440 945 

transformed rapidly into the ferrite phase between 800 
and ?00 ~ The minimum amount of untransformed 
austenite, which became martensite after quenching, was 
about 17%. 

4.2. Strength of dual-phase steels and 
strain-hardening characteristics 

Table I also contains the Hollomon constants, strength 
coefficient, K, and strain-hardening coefficient, n, and 
0.2% offset yield stress (0.2% YS) and ultimate tensile 
stress (UTS) for various volume-fractions of martensite. 
The Hollomon curves were fitted from the true- 
stress-true-strain curves of dual-phase steels. K is rarely 
influenced by f ;  however, n decreases as f increases. This 
fact implies that the strain-hardening rate at early defor- 
mation increases as f increases. 

Fig. 3 shows the stresses as functions of martensite 
content. With the exception of small strains (~ ~< 0.01), 
the stress at each strain increases with increasing volume 
fraction of martensite. A transition in the slopes, da/df  
appears at f =  0.3; the slopes in the range 0.17 ~<f~< 0.27 
are approximately three times as large as those in the 
range 0.32 ~<f~< 0.50. In contrast, the UTS in Table I 
did not reveal a transition point; the volume-fraction 
dependence of UTS was given by a well-fitted curve: 
UTS = 677 + 564f(MPa). 

Strain-hardening rates, dcy/d~, were calculated from 
the experimental stress-strain curves, and they are 
represented in Fig. 4 as log (dcy/d~) - log (e) plots. The 
description of strain-hardening behaviour using the 
log (dcy/d~) - log (e) plot is called Jaoul-Crussard ana- 
lysis [-29]. This figure shows that the slope of the strain- 
hardening rate has three different stages. This means the 
deformation is divided into three stages; I, II and III. 
Stage I is the deformation before a strain of about 0.007; 
stage II is strain in the range 0.007-0.03; and strains 
larger than 0.03 are contained in stage III. As seen in 
Fig. 4 the strain hardening rate in the stages I and II is 
proportional to the volume-fraction of martensite, f 
while in stage III it is almost independent of martensite 
content. 

Lawson et al. [3] also observed three different 
stages in the Jaoul Crussard plots of dual-phase 
steels. According to their results, when a small amount 
of martensite was contained in dual-phase steel, three 
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Figure 3 Volume-fraction dependence of stress at several strains: 
(O) 0.10, (~) 0.05, (D) 0.03, (0) 0.01, and (A) 0.005. 

10 e 

13_ 

:s 

( g  

. . l =  

105 

104 

1 0  3 

Stage I Stage II Stage III 

102 , , , , , , , , r  , , . . . . . .  i . . . . . . .  , 

10 -3 10 "2 10"1 10 o 
Strain 

Figure 4 Strain-hardening rate as a function of strain. Deformation 
is divided into three stages by the strains at 0.007 and 0.03. The 
strain-hardening rates are shown for three values off: (O) 0.50, (O) 
0.27, and (~) 0.24. 

deformation stages clearly appeared in the Jaoul-  
Crussard plot. However, the Jaoul-Crussard plot for 
f = 0 . 3 4  appeared as a straight line, so the 
stress-strain curve was drawn by a single parabolic 
curve. According to the results of the present work 
and ~to Lawson et al. the three-stage deformation, 
which seems to come from the characteristics of de- 
formation of a body-centred cubic (b.c.c.) ferrite phase, 
disappears when the martensite content in the dual- 
phase steel is larger than about 30%. The transitions 
shown in Fig. 3 also occur at f = 0.3. These transitions 
will be explained by the stress and strain partition 
described in the following sections. 

4.3. Inhomogeneous deformation 
of dual-phase steels 

Stress and strain partitions are represented in Figs 5 and 
6 by relating the stress-strain curves of the in situ ferrite; 
% - a l ,  in situ martensite; ~;-e2, and their composite; 
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Figure 6 Relations between the in situ stress-strain curves of: ([~) 
ferrite, (O) martensite, and (0 )  their composite when martensite 
( f =  0.50) has large plasticity. The concurrent stress-strain states 
are related by the dashed tie lines at e = 0.01, 0.04, 0.07 and 0.10. 

~-e. Fig. 5 shows the stress and strain partition in 
a dual-phase steel containing a relatively small amount 
of high-strength martensite ( f =  0.22). In this case the 
martensite phase deforms elastically during most of the 
deformation range. This case is very similar to the sphe- 
roidized carbons steels [9 123. According to the classi- 
fication of Tomota et al. [14] (classification for deforma- 
tion stages), the deformation of Fig. 5 is in stage B. 
The dashed lines indicate ~ = 0.02, 0.05, 0.10 and 0.15, 
and they connect the concurrent stress-strain states of 
the in situ ferrite, martensite and composite. If the 
dashed line is parallel to the stress axis, it corresponds 
to an iso-strain theory, and if the dashed line is parallel 
to the strain axis, it corresponds to an iso-stress the- 
ory. The dashed lines in Fig. 5 are between the iso- 
strain and the iso-stress lines. Therefore, the theory 
used in this work is an intermediate theory between 
iso-strain and iso-stress theory [13]. 

Fig. 6 shows the relation between the in situ stress- 
strain curves of the ferrite, martensite and their com- 
posite for f =  0.5. The martensite phase is plastically 
deformable after about 1% composite strain, so the 
deformation becomes the third stage of the classification 
of Tomota et al. for deformation. The dashed tie lines 
(connecting corresponding partitioned stresses and 
strains of ferrite, martensite and dual-phase steel) are 
marked at strains 0.01, 0.04, 0.07 and 0.10. One can 
observe that large amounts of martensite ( f =  0.5) 
induce large plastic deformation of the martensite itself. 

Fig. 7 represents the variation of stress ratios, 
(~21/(~ 1, during straining. The stress ratios in the dual- 
phase steels increased rapidly from 1.0 during early 
deformation and were nearly saturated after about 5% 
strain. With the exception of the small strain region, the 
stress ratios were between 1.6 and 2.2. By using the 
shear-lag model. Szewczyk and Gurland [6] showed 
that the stress ratio was 2.25 for a dual-phase steel with 
f =  0.16. Further, the stress ratio from the back stress 
data of Gerbase et al. [5] for a dual-phase steel with 
f =  0.15 was 2.3 at 1% strain [6]. The stress ratio 
increases as the martensite content increases, but after 
f =  0.3 it decreases. This is because the martensite phase 
becomes softer as its volume-fraction increases. Reduc- 
tion in the strength of martensite (austenite before 
quenching) is mainly caused by the reduction of the 
carbon concentration of martensite. Note that the aver- 
age carbon content is 0.11 wt %, but almost all of the 
carbon atoms stay preferentially in the austenite phase at 
intercritical temperature. 

Fig. 8 shows the variation of the microhardness 
numbers of ferrite and martensite. The experimental 
data were measured in specimens strained by the uni- 
form strain. The specimen surface for the microhard- 
ness test was perpendicular to the tensile direction, so 
the indentation direction was parallel to the tensile 
directon. The calculated values were obtained from 
the l l -components  of partitioned stresses at the uni- 
form strains of respective dual-phase steels by using 
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the following equation [30] 

cylt = 2.9H~ (MPa) (22) 

cy2t = 2.9H2v (MPa) (23) 

where H i  and H 2 denote the Vickers microhardness 
numbers of ferrite and martensite, respectively. For 
both phases the measured and the theoretical values 
agree. In Fig. 8, the strength of martensite decreases 
rapidly until martensite-volume fraction reaches 
about 30%, and then it has little variation even if the 
volume fraction of martensite increases greatly. The 
strength of ferrite, however, is preserved although 
martensite content increases. The microhardness ra- 
tios between plastically deformed martensite and fer- 
rite have values between 1.6 and 2.2, which coincide 
with the stress ratios in Fig. 7, Our conclusion is that 
the present theory describes the stress partition well. 

The variation of Strain ratios, 2 1 el ~/~ ~, is sensitive to 
the volume fraction and strength of the martensite 
phase, as seen in Fig. 9. The strain ratio for small 
f decreases rapidly during early deformation, and it 
becomes smaller at larger strain. This is because the 
strength of martensite is so high that the martensite 
phase has no plasticity. However, as the martensite 
content in dual-phase steel increases, the martensite 
may deform plastically from small strain, then the 
strain ratio increases rapidly. This may be caused by 
reduction of the strength of martensite due to the 
dilution of the carbon concentration in martensite 
(austenite before quenching). The strain ratio for 
f = 0.5 decreases rapidly from 1.0 during early strain- 
ing, but it increases slightly after about 5% strain. This 
increase may come from the plastic deformation of 
martensite. 

Shen et al. [7] observed the inhomogeneous de- 
formation of dual-phase steels, and concluded that the 
strain ratio, which defines the degree of strain in- 
homogeneity, depends on the microstructural para- 
meters; it increases with increasing volume fraction of 
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Figure 9 Variation of strain ratios between martensite and ferrite 
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TABLE II Variation of carbon content in ferrite and martensite 
and yield stress C~vs of martensite. The average carbon content of the 
steel is 0.11 wt %. 

2 (MPa) f C1 (wt %) C2 (wt %) ~vs 

0.17 0.0114 0.5914 2224 
0.22 0.0142 0.4497 1843 
0.24 0.0170 0.4045 1722 
0.27 0.0184 0.3577 1596 
0.32 0.0198 0.3017 1446 
0.37 0.0218 0.2601 1334 
0.43 0.0206 0.2285 1249 
0.50 0.0194 0.2006 1174 

martensite, but decreases as the carbon content of the 
martensite increases. They also showed that tempering 
caused an increase in the strain ratio. It was also 
proved that the stress ratio increased as fincreased if 
the strength of the second phase did not vary [13]. 
Therefore, one can conclude that the degree of stress 
and strain inhomogeneity in dual-phase steels is main- 
ly determined by the volume-fraction and strength of 
martensite. 

4.4. Initiation of plastic deformation of 
martensite and tensile properties 

The theoretically calculated composite strain at which 
the martensite phase began to deform plastically was 
compared with the uniform strain of the composite 
(dual-phase steel)i The 0.2% offset yield stress of 
martensite was calculated by the relation given by 
Leslie [31]: 

C~2s = 635 + 2687C2 (MPa) (24) 

where C2 is the carbon content at the martensite phase 
in wt %. As the average carbon content of the present 
dual-phase steels was 0.11 wt %, C2 was obtained by 
the following relation 

0.11 -- ( 1  - -  f )C1  
C2 = (25) 

f 



The equilibrium carbon content of the ferrite phase, 
C1, was obtained from the equilibrium phase diagram 
of Fe -C  system [32]. The strain at which martensite 
yields was determined by the macroscopic strain at 
which the partitioned effective stress of martensite, cy2, 
reached the calculated value of Cy2s . 

As shown in Fig. 10, the strain for martensite yield 
decreases rapidly as the volume fraction of martensite 
increases to about 30%, while the uniform strain de- 
creases slowly. The two curves intercept at f =  0.25. 
This means that the martensite phase yields after uni- 
form strain when the martensite content is less than 
about 25%, but it deforms plastically before uniform 
strain with a larger amount of martensite. 

The transition at f =  0.3 in the increasing rate of 
composite stress shown in Fig. 3 can be explained by 
means of the variation of the strain for martensite 
yield in Fig. 10. The martensite phase which is deform- 
ing elhstically can more effectively bear loads, thus the 
value of dcy/dfis larger at small f than at large f As 
f exceeds 0.3, the strength of martensite is reduced by 
dilution of the carbon content, so the martensite phase 
undergoes plastic deformation from early straining. 
The plastically deforming martensite sustains less 
stress than rigid high-carbon martensite because the 
unrelaxed incompatibility giving stress concentrations 
on martensite is relaxed by the plastic deformation of 
martensite. 

The three stage deformation in Fig. 4 evidently 
arises from the deformation of ferrite [3], and it ap- 
pears in the specimens containing a small amount of 
martensite phase ( f <  0.3). However, as the amount of 
martensite increases above 0.3, the deformation is 
contained in stage C of the classification of Tomota  
et al. [14] from early deformation, and a large portion 
of total plasticity is attributed to the plasticity of 
martensite. The strain hardening in stage C may be 
characterized by combined effects from the strain 
hardening of ferrite and martensite. Then the three 
stages I, II and Ill in the strain-hardening rate become 
roughly a single stage as f increases above 0.3, be- 
cause of the plastic deformation of martensite. It was 

concluded that the three stage deformation appears 
when plastic deformation of ferrite predominates over 
plastic deformation of the ferrite-martensite com- 
posite. 

4.5 .  In situ s t r e s s - s t r a i n  c u r v e s  o f  

f e r r i t e  a n d  m a r t e n s i t e  

The ferrite and martensite in dual-phase steels con- 
strain each other during deformation. Dislocation 
density as well as dislocation-slip mechanisms may be 
affected by the constraint effects. Ashby's strain-hard- 
ening theory [22 23] showed that the plastically de- 
forming matrix was hardened by two short-range in- 
ternal stresses: the hardening stress due to the statist- 
ically stored dislocations and the forest-hardening 
stress by the geometrically necessary dislocations. He 
assumed full relaxation of internal stresses caused by 
strain incompatibility. In addition to these two hard- 
ening stresses, Chang and Asaro [10] took into ac- 
count, in their work-hardening model, the source 
shortening stress arising from the interactions between 
bowing dislocations and the stress field around hard 
particles. The hardening stress of the matrix phase due 
to the geometrically necessary dislocations and the 
source shortening stress are caused by the second 
phase. Therefore, the in situ stress-strain curve of the 
ferrite phase is different from the curve of ferrite which 
is free from martensite. 

The in situ stress-strain curves were calculated by 
the method described in Section 3.1. The calculated 
in situ stress-strain curves of ferrite for several vol- 
ume-fractions of martensite are plotted in Fig. 11. For 
low deformation, the strain hardening of the ferrite 
matrix increases as f increases. But the curves con- 
verge to a single curve after several percent strain. The 
difference between the strain-hardening rates of ferrite 
at low deformation can be explained by the variation 
of the size of ferrite due to the increase of martensite. 
Fig. 12 is the variation of the mean intercept lengths of 
each phase. Ashby's strain-hardening theory 1-22-23] 
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implies that the strain-hardening stress caused by the 
second phase is proportional to (XG) -1/2, where X G 
was defined as the geometric slip distance, and was 
a characteristic of the microstructure. It should be 
noted that X G in a multiphase system of ferrite and 
martensite is proportional to the mean intercept 
length. Since the mean intercept length of the ferrite 
phase decreases with increasing volume fraction of 
martensite, as seen in Fig. 12, the ferrite stress at low 
deformation increases with martensite content. Also it 
was found that the hardening stress of the ferrite 
matrix due to the second phase increases at small 
strain and in the fine microstructures [23]. Since the 
specimens in this study have coarse microstructures, 
the phase-size dependence of the in situ stress-strain 
curves of ferrite disappears at large strains. 

The in situ stress-strain curves of martensite, how- 
ever, were obtained by the method described in 
Section3.1., when the martensite phase deformed 
plastically. Fig. 13 includes the in situ stress-strain 
curves of martensite. The martensite strength de- 
creases as the volume fraction of martensite increases. 
This fact may be because of the softening of the mar- 
tensite phase by dilution of carbon content. 

4.6. Internal stress development during 
deformation 

Internal stress (long range) arises from unrelaxed plas- 
tic incompatibility. Unrelaxed plastic incompatibility 
is generated as the forms of Orowan dislocation loops 
accumulate around second-phase particles after the 
passing of dislocations [15], or accumulated disloca- 
tions are obstructed by large second-phase barriers. 
The development of unrelaxed plastic incompatibility 
is a process of load transfer from the ferrite matrix to 
martensite islands, and it is related to the stress parti- 
tion between ferrite and martensite. 

The l l-components of the internal stresses of re- 
spective phases can be calculated using Equations 17 
and 18, and they are represented in Fig. 14. The abso- 
lute value of the internal stress in the ferrite matrix is 
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called the back stress. Since the internal stress ofl~errite 
is negative, the generation of the intern.al stress delays 
the further deformation of ferrite. Averages of internal 
stress over the composite volume are zero, thus for 
f =  0.5 the internal stresses of ferrite and martensite 
are equal. 

The absolute values of the internal stresses at re- 
spective phases increase rapidly for low deformation; 
however, the rate of increase is much lower for greater 
deformation. The rate of increase of internal stress is 
influenced, at first, by the amount of plastic relaxation 
[18, 22-26]. As deformation proceeds to higher strain, 
the ferrite-martensite composite cannot accommod- 
ate the unrelaxed plastic incompatibility without plas- 
tic relaxation or crack formation, so plastic relaxation 
occurs to reduce internal stress which is too large to be 
sustained. Even with a small-volume fraction of the 
second phase, plastic relaxation occurs before 1% 



strain [4, 18]. Most of the unrelaxed plastic incom- 
patibility is relaxed by the formation of secondary 
dislocation loops [24-25] after a critical strain. But 
the plastic incompatibility of the unrelaxed state, 
which is a very small proportion of total strain, causes 
a significant amount  of internal stress as illustrated in 
Fig. 14. 

Another cause of the reduction of internal stress is 
plastic deformation of martensite. The internal stres- 
ses of martensite for f = 0.37 and f =  0.50 are much 
less than the internal stresses of martensite for f < 0.3. 
This is because of the martensite plasticity. It can be 
concluded that martensite plasticity has an important 
role in relaxation of the internal stresses. 

5. Conclusions 
Tensile properties and inhomogeneous deformation 
of fe'rrite-martensite dual-phase steels containing 
17-50% martensite were analysed. The results are 
summarized as follows. 

1. The stress of dual-phase steels at a strain was 
proportional to the volume fraction of martensite, f 
The slope of o - f  curve ( = do /d f )  has a transition at 
f ~  0.3; the slopes in the range 0.17 ~<f~< 0.27 were 
approximately three times as large as those for 
0.32 ~<f~< 0.50. This was related to the plastic de- 
formation of martensite. 

2. In Jaoul-Crussard analyses, a three-stage deforma- 
tion was found in the dual-phase steels if f <  0.3. This 
characteristic deformation comes from the three-stage 
deformation of the ferrite matrix, and it disappears if 
f >  0.3. 

3. The newly developed theory showed the relation 
between the in situ stress-strain curves of ferrite, mar- 
tensite and their composite (dual-phase steel). The 
theory proved to be an intermediate theory between 
the iso-stress theory and the iso-strain theory. 

4. The stress ratios, o~1/oI~, increased for low 
deformation, for larger deformation they were nearly 
saturated at values between 1.6 and 2.2. For f >  0.3, 
the stress ratios were much reduced by plastic defor- 
mation of martensite. Microhardness ratios between 
ferrite and martensite at uniform strain were also 
present between 1.6 and 2.2. 

E l l / E l l ,  5. During deformation the strain ratios, 2 
decreased before yielding of martensite, but they were 
almost saturated after the yielding of martensite. The 
variation of strain ratios was very sensitive to the 
volume fraction and strength of martensite. 

6. According to theoretical evaluation, the marten- 
site phase yields after the uniform strain for f < 0.25, 
while it deforms plastically before the uniform s(rain if 
f >  0.25. 

7. The in situ stress-strain curves of ferrite and 
martensite were calculated from the partitioned stres- 
ses and strains. Low deformation of ferrite was de- 
pendent on the slip distance (mean intercept length) of 
ferrite, the in situ stress-strain curves of martensite, 
however, were largely dependent on the volume frac- 
tion of martensite. 

8. Internal stresses at respective phases increased 
rapidly in the small strain region, and at larger strain 

the increasing rates were much reduced by plastic 
relaxation in ferrite and by plastic deformation of 
martensite. 

Appendix 
When uniaxial stress, o, is externally applied to a com- 
posite body, the strain energy density is represented as 

;0 U = o(~') d~' (A1) 

where ~ is the composite strain. If the flow curve of 
the composite is given by the form of a Hollomon 
curve [33]; 

o = K~" (A2) 

then integration of the strain energy density gives 

K 1 
U - - - ~ "  +t _ - - o ~ .  (A3) 

n + l  n + l  

The composite stress and composite strain can be 
calculated from the in situ stresses and strains of con- 
stituent phases by means of the modified rules of 
mixtures [34]. When the composite consists of two 
phases and the volume fractions of phase 1 and phase 
2 are given by f t  and f2, respectively, the modified 
rules of mixtures are 

O = f l 0 1  + f2o2 (A4) 

g = f1~1 4- f2E2 (A5) 

where % and o2 are the in situ effective stresses at 
phase 1 and phase 2, respectively, and q and ~2 are 
the in situ effective strains at respective phases. Ap- 
plying Equations A4 and A5 to Equation A3, the 
strain energy density becomes 

1 
U - ( f l o t  + f 2 o 2 ) ( f x e l  + f2~2) .  

n 4- t 
(A6) 

A constraint to which the volume fractions are subject 
is defined by 

C = f l  4- f 2 -  1 = 0 (A7) 

The increasing path of the strain energy density during 
deformation is constrained by the microstructure of 
the specimen and the loading conditions. The con- 
straints give the minimized or maximized path along 
which the energy of the system increases. Since we 
have Equation A7, we shall assume that the strain 
energy density, U, of Equation A6 has an extreme 
value during deformation. The Lagrangian-multiplier 
method [35] is suitable for finding the extreme-value 
condition. In this method the constraints are incorp- 
orated into the increment of a physical quantity by 
means of multipliers. 

Differentiating U and C by f~ and f 2  gives 

~U OU 
dV - afl df~ + ~ d f2 (A8) 

�9 
aC d fl  + d f2 (A9) 

d C -  afl  ~f2 
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A Lagrangian multiplier, X, is introduced to construct 
the extreme-value condition of U as [13]  

dU + XdC = 0 (A10) 

Inserting Equations A8 and A9 into Equation A10, 
then 

OU OC - - + X - -  - 
aA afl 
#U ~C - - + X - -  - 
af2 aj2 

- 0 

- 0 

(A 11) 

(A12) 

Since Equation A7 gives the fol lowing condit ion 

one can write 

~C ~C 

aA 
- 1 (;~13) 

~U ~U 
- - X (A14) 

af, af2 
where X is a constant which need not be determined. 
When this condit ion is satisfied, U is an extremum at 
a stress-strain state. 

Inserting Equation A6 into Equation A14 

2(1 - f ) o l g  1 + f O l g  2 + f o ' 2 S  1 = 2 f o 2 g  2 

+ (1 - - f ) c ~ , g  2 + (1 - - f ) ( Y i g l  (A15)  

where ft = 1 - f  and f2 = f  Using the modified rules 
of mixtures,  two governing equations can be derived 
for inhomogeneous  deformation of a two-phase  com-  
posite from this equation (see Equations 2 and 8 in the 
text). 
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